

Indigenous Sodium ion Battery: An initiative toward self- reliant India

Dr. Yogesh Sharma
Co-founder Indienergy

&

Associate Professor, IIT Roorkee

Agenda & Context

Brief Introduction

Challenges in Scaling Indian Battery Industry

Why Sodium ion batteries?

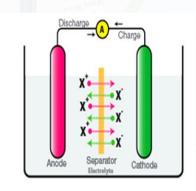
Innovations

Technology Differentiation

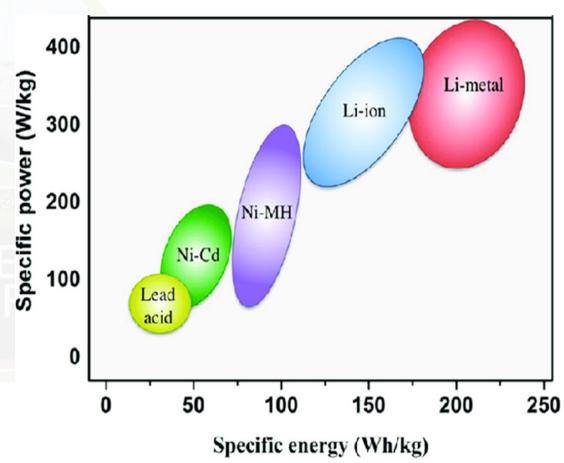
Case Study

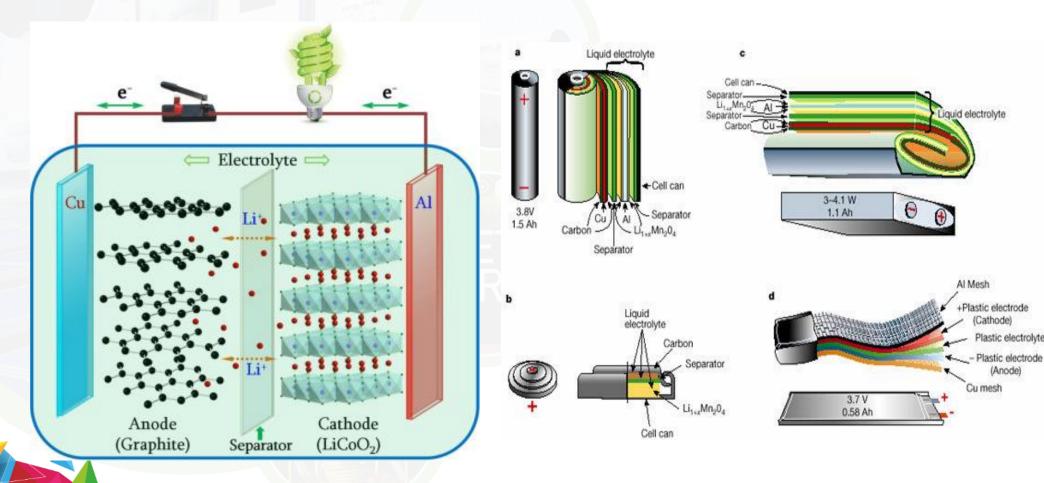
Sodium-ion battery Technology Status

Conclusions



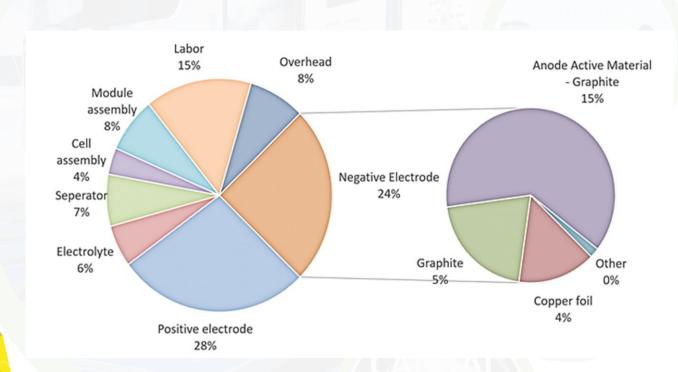
Battery and its types

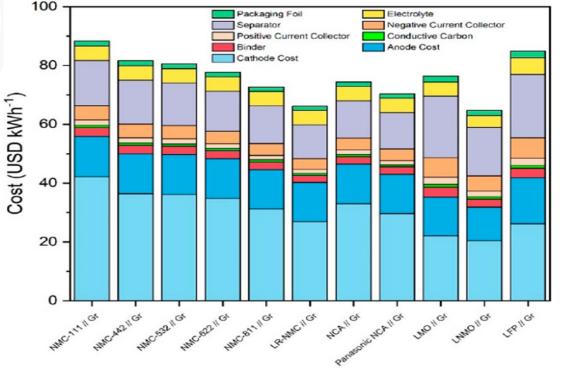




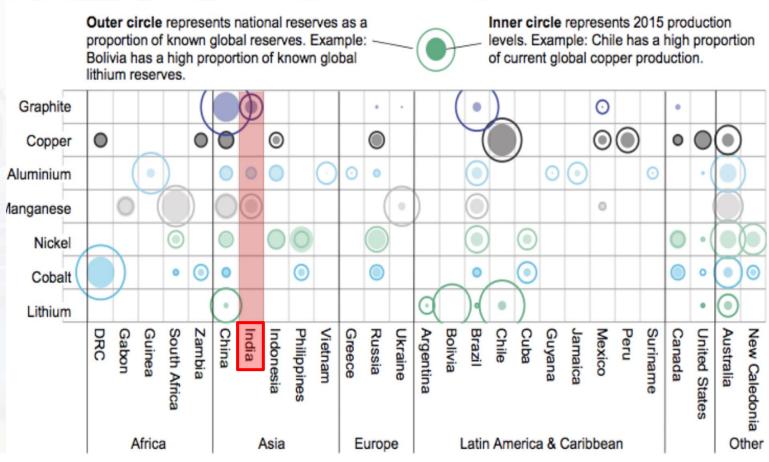
INDI ENERGY Empowering Energy Independence

Li-ion batteries and different available sizes





Component Wise Distribution



Challenges in scaling Indian Battery Industry

Reserves of Critical
Materials for Nickelmanganese-Cobalt
Lithium-ion Batteries in
Selected Countries-

Niti Aayog

Note: Area of outer rings represent national reserves as a proportion of known global reserves, shaded circle represents 2015 production in that country x 20 as a proportion of known global reserves.

Why Sodium-ion Battery?

High battery performance at low cost

Highly safe and do not spread fire

Simple Battery Design

Sustainable & ecofriendly

Uses low cost, earth abundant materials

Infinite resources and worldwide availability

Applications

Electric Two & Three Wheelers

Solar & Wind Grid

UPS & Inverter Batteries

SLI Batteries

Small Applications like Toys, Emergency Lights etc.

Innovation 1

Hard Carbon

Sodium Ion Batteries

Bio/Agri-Waste

Indi Energy achieved world's highest capacity in Hard Carbon for Sodium ion batteries (SIBs) made using bio/agricultural waste. Technology patented by Indi Energy (both Indian and International).

Indi Energy **TMAX Hard Carbon** Manufacturing -Rs. 8,500 Price per Kg Selling price Rs. 25,000 -Rs. 14,000 -40.000 16.000 per Kg

- Only company in India currently working in supplying low cost, high quality Hard Carbon for SIBs. Currently running Pilot plant in IIT Roorkee.
- The innovation can simultaneously reduce air pollution issues and increase income for Indian farmers.

Innovation 2

Sodium precursors

Sodium-ion cathode

- Indi Energy Sodium ion cathode uses earth abundant materials.
- No use of lithium, cobalt or nickel.
- High charge/discharge rate capable cathode material.
- Technology patented by Indi Energy.

Innovation 3

India's first company to indigenously develop Sodium ion Pouch Cell, made using locally available materials.

Sodium ion Pouch Cell

Specification:

- 3.2 V, 1000 mAh capacity.
- Cycle life tested:
 over 500 cycles
 with >80% capacity
 retention.

Technology Differentiation

For Battery Cell	Lead Acid Battery	Lithium Iron Phosphate Battery (LFP)	Indi Energy Sodium-ion battery
Cost Per kWh	Rs. 2,500 – 3,000/kWh	Rs. 10,000 – 11,000/kWh	Rs. 7,000 – 8,000/kWh
Energy Density	30 – 35 Wh/kg	120 – 140 Wh/kg	100 – 120 Wh/kg
Nominal Cell Voltage	2.1 V	3.2 V	3.2 V
Safety	Moderate	High	High
Materials	Toxic	Scarce	Earth - Abundant

Case Study

E-rickshaw battery

- 2 million E-rickshaws currently running in the country covering more than 80% market share of all EVs currently running in India.
- A typical E-Rickshaw battery of 4-5 kWh battery ratings costs around Rs. 25,000-30,000.
- Currently uses poor performing Lead acid battery with life of only 6-12 months, use of toxic materials like Pb and charging time of 8-10 h.
- Li-ion batteries with life of around 2-3 years, charging time of 3-5 h, Heat dissipation issues and cost of around Rs. 65,000-70,000.
- The Sodium ion batteries would easily replace them with life of atleast 3 years, charging time of 3-5 h and estimated cost of around Rs. 45,000-50,000.

Sodium ion Battery Technology Status

Na+ Battery (SIB) Manufacturers Overview

Manufacturers	Estab.	Collaboration / Investments /Announcements	Cell Energy De.(Wh/Kg)	Charge / dis- charge cycle	Mass Prod.	Website:
FARADION Abused Energy Edward Edward	2011, UK	-> Collab. (ESS): Faradion's IP w/ AMTE 's design & manufacturing>2021, Faradion was acquired by Reliance Industries of India> w/ IPLTech, for SIB for electric Commercial Vehicles in India	155	3000 cycles	Giga-factory planned in India.	https://faradion.co.uk/
CATL	2011, China	-> CATL released the 1st SIB in <u>July 2021</u> w/ energy density 160Wh/Kg> Next-generation sodium-ion battery energy density will > 200Wh/kg> Plans to form a basic industrial chain by 2023.	160	Undisclosed	Production Capacity undisclosed.	https://www.catl.com/ en/
Natron Energy	2012, USA	-> w/ Clarios : strategic agreement - production of large-scale SIB> Developing SIB for >10 years. Mass Manufacturing Q2, 2023.	20-30	50,000 cycles	0.6 GWh/yr in 2023	https://natron.energy/
(国) 中科海纳 HINA BATTERY	2017, China	-> HUA YANG GROUP cooperated w/ HiNa BATTERY & Three Gorges Group to build cathode and anode production lines and SIB cell production lines.	145	4500 cycles	2022: 1 GWh/year Long Term : 5 GWh/yr.	https://www.hinabatt ery.com/
容百科技 RONBAY TECHNOLOGY	2014, China	-> In the process of technical R&D and production line construction of ferromanganese Prussian white & layered oxide cathode materials for SIB	Undisclosed	Undisclosed	Ton-level output in 2022	http://www.ronbaym at.com/
ZDDLNASM 公們能源	2021, China	-> ZOOLNASH's product is a sodium iron sulfate battery, and its patented method for preparing high-performance cathode materials> Investment : Country Garden VC affiliated w/ major developer.	Undisclosed	Undisclosed	2023	http://www.zoolnasm .com/
阿 新创	2018, China	-> R&D and production of cathode materials & electrolytes for SIB> Downstream customers include Honeycomb Energy, etc> App : ESS, electric 2W/3W, low-speed EVs	130-160	5000 cycles	Launch in 2022; 80,000mt of Cathode & Anode materials /year in 3-5 years.	http://natriumenergy.
EVE	2014, China	-> 2022 : Cylindrical, ≥135Wh/kg, 10C Rate w/ 10m FC to 80% SOC, 2500 cycles. -> 2024 : SIB 140-160Wh/kg 6000+ cycles 50\$/kWh, -> 2026 : SIB 140-160Wh/kg 10000+ cycles 30\$/kWh.	135-160	2500-10,000 cycles	2023	https://www.evebatte ry.com/en
Tiamat Energy	2017, France	-> Tiamat designs, develops and manufactures SIB for mobility & ESS> Develop low-voltage systems for xEVs for electromobility from 2025.	90-120	5000 cycles	6 GWh/year by 2030.	http://www.tiamat- energy.com/
LiFLN*	2013, China	-> Low-speed EVs, EV buses, stationary storage batteries for household use -> Presented the 1st consumer-grade SIB.	140	4000 cycles	2023	http://www.lifuntech .com/
Nippon Electric Glass	1944, Japan	-> Exhibit of All-Oxide All-Solid-State Sodium (Na) Ion Secondary Battery (2022)	Undisclosed	Undisclosed	2025	https://www.neg.co.j p/en/
BAD	2003, China	-> BYD to launch electric hatchbacks with new Sodium-ion batteries> New BYD Dolphin EV hatchback was recently spotted tested in Sydney	Undisclosed	Undisclosed	2023	BYD News

Indi Energy
Sodium-ion battery
& Hard Carbon

Energy Density: 100 – 120 Wh/kg

Nominal Voltage: 3.2 V

Safety: High

Made from Agricultural waste and Earth – Abundant materials

Hard Carbon Capacity: 300 mAh/g (upto 1.0 V) Cyclability: >1000 cycles at 1C with >80% capacity retention Challenges in scaling Sodium-ion Batteries globally

Supply of low cost, high quality Hard Carbon

Supply of low cost, high rate capable Sodium ion cathode material

Supply of low cost, high quality Sodium ion electrolyte

Achievements

Products:

Sodium ion Pouch Cell

Hard Carbon

Sodium-ion cathode

Supported by:

Patents filed/granted

5 Indian Patents filed on various aspects of Sodium batteries, 1 (one) already granted by the Indian Patent office.

International **Patent** (PCT) filed.

Achievements

Indi Energy won the DRDO's Dare to Dream 3.0 contest under Startup Category in Oct 2022.

Indi Energy also won the Best Startup Award in the Startup Expo organised at IIT Roorkee in Nov 2022.

Indi Energy won the Best Startup Award under Energy sector in National Startup Awards 2022.

Thank You

For discussions/suggestions/queries email: yogesh.sharma@ph.iitr.ac.in