

Ministry of Heavy Industries

Revolutionizing the energy transition with green hydrogen

etecrama, Hall 2 & Hall 4

Shaji John Sr Vice President – Sales and BD (Middle East & South Asia) & Global Head **EPC & Projects**

Ohmium

Key steps to achieve 2070 "Net-Zero" ambition by India

Electricity Sector	Transport Sector	Industry Sector
 Coal-based power generation must peak by 2040 and reduce by 99 % between 2040 and 2060. 	 The share of Evs in car sales must reach 84 % by 2070 	 Coal use in the industrial sector must peak by 2040 and reduce by 97 % between 2040 and 2065
 PV generation capacity must increase to 1689 GW by 2050 and to 5,630 GW by 2070 	 The share of electric trucks in freight trucks must total 79 % by 2070, the rest being run mainly on hydrogen 	 Hydrogen share in total industrial energy use must increase to 15 % by 2050 and 19 % by 2070

 Wind generation capacity must increase to 557 GW by 2050 and 1792 GW by 2070

Source: IEA 2021, Net Zero by 2050 - A Roadmap for the Global Energy Sector | Ohmium Confidential

What is Green Hydrogen?

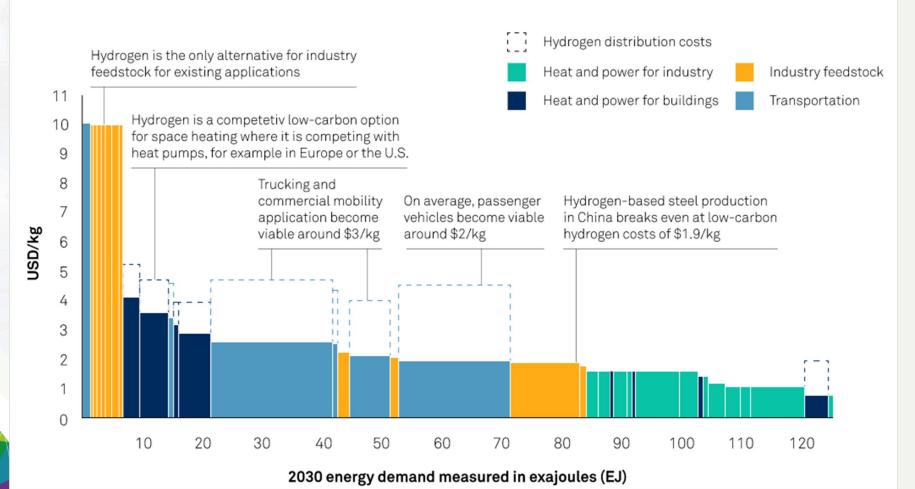
Hydrogen Overview

 With the energy sector representing ~75% of greenhouse gas ("GHG") emissions⁽¹⁾, the transition of energy to renewable sources is a crucial component to mitigating global warming and climate change

Decarbonization technologies like renewable power and biofuels offer constructive solutions, but green hydrogen offers the only long-term, scalable and cost-effective option in sectors such as steel, ammonia and transportation

ey Hydrogen gen produced from al gas or other light carbons	 Blue Hydrogen Hydrogen obtained in a similar way to grey hydrogen, but with each on conturn utilization 	Green Hydrogen • Also called "clean hydrogen," generated from renewable energy,
al gas or other light	similar way to grey hydrogen, but with	hydrogen," generated from renewable energy,
	oorbon conture utilization	
	carbon capture, utilization and storage techniques applied	using water as a feedstock, through a process called electrolysis
		Rene wable Energy
	ZERO CO2 Hydrogen	

Source: IEA, "Greenhouse Gas Emissions from Energy Data Explorer" as of November 10, 2021 | Ohmium Confidential



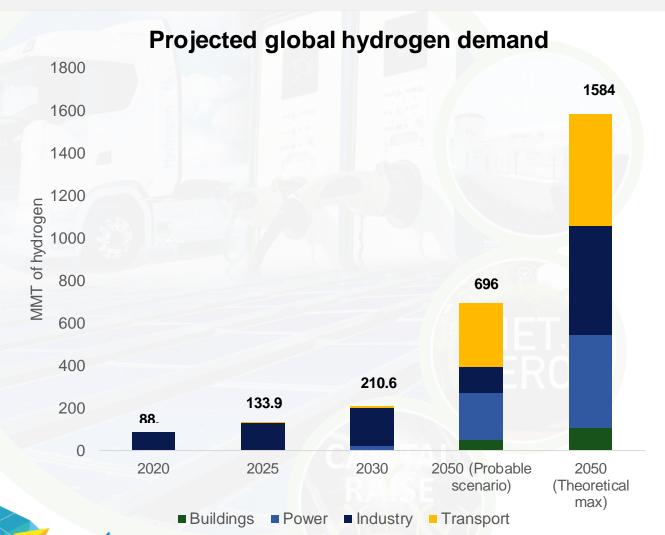
Cost Curve For Hydrogen Production Across Segments And Regions

Break-even hydrogen costs at which hydrogen application becomes competitive against low-carbon alternative in a given segment

Hydrogen for refineries, ammonia production and methanol are viable as of today.

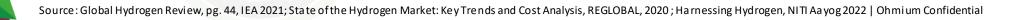
2

Applications in transportation, power and other industries start to become viable in optimal regions in 2-3 years.


Source : How Hydrogen Can Fuel The Energy Transition, S&P Global Ratings, Nov 2020 | Ohmium Confidential

696 Mt to 1584 Mt

Annual demand for hydrogen expected by 2050

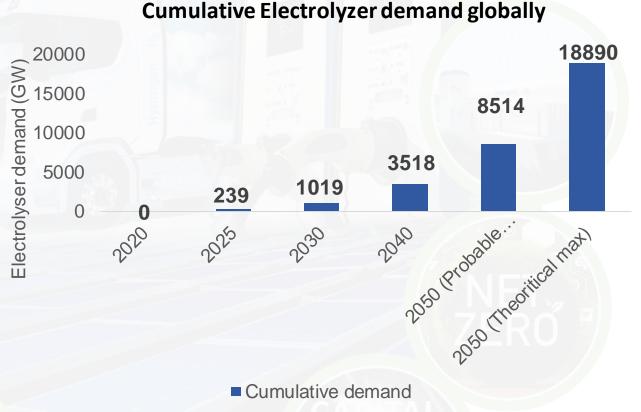

> \$11 trillion

Investment would be made in production, storage and transport infrastructure

24-50%

Of world's energy in 2050 would be met with hydrogen

\$2 - \$5 trillion/year Of economic impact worldwide by 2050



Note:

- 1. Includes Sales and Replacement of Electrolyzer after 15 years.
- 2. Estimated using hydrogen demand projections to achieve 2050 net zero from IEA

Market opportunity for India

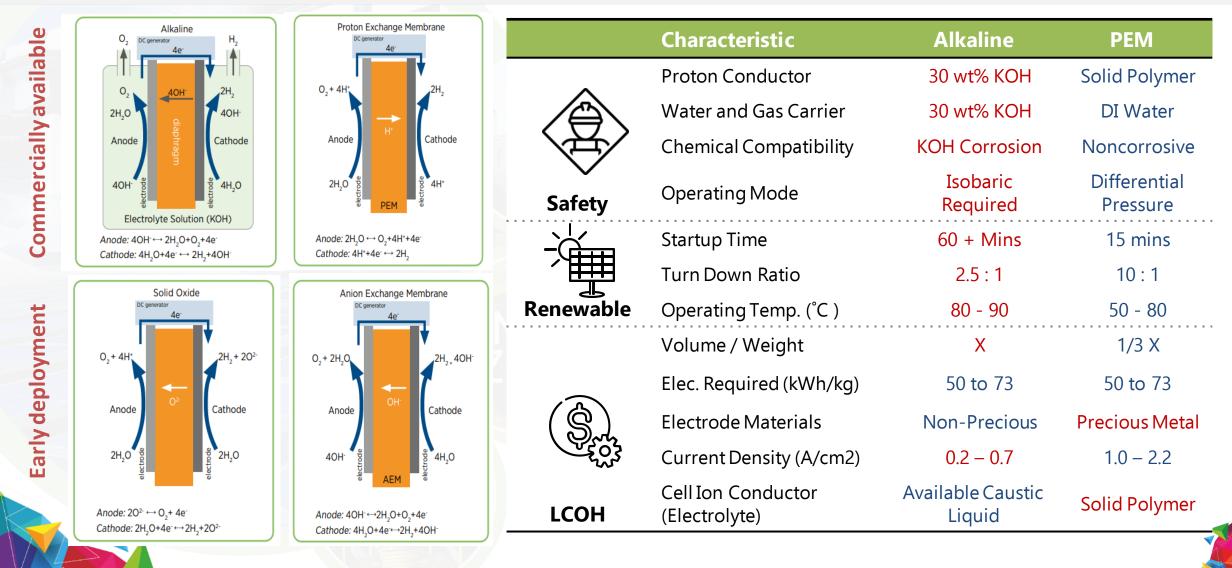
> 60 GW

Of electrolyzer demand to produce 5 million tonnes of green h2 annually by 2030 as targeted by India's H2 Mission

60%

Of the existing manufacturing capacity is concentrated within Europe.

~ 3 GW


Current manufacturing capacity globally.

Source: IRENA 2021; Yujing Guo et al, Earth and Environmental Science 371 (2019) 042022, Mark Ruth et al, 2017 Fuel Cell Seminar | Ohmium Confidential

About Ohmium

Mission

Ohmium is making Green Hydrogen a reality today. The company's suite of innovative electrochemical products enables customers to achieve their sustainable energy goals in industrial, transportation and energy projects.

Highlights

- Deep domain expertise in electrolyzer, fuel cell and renewable energy industries.
- R&D Centers in San Francisco Bay, United States and Bangalore, India.
- Manufacturing capacity of 500 MW and ramping toward 2+ GW in India.
- Diverse team of about 300 people.
- Global presence focused on Europe, North America, Middle East, India and Australia.

Ohmium Product Approach

- Advanced Technology: Interlocking modular proton exchange membrane (PEM) technology with American IP and Indian based manufacturing cost structure.
- **Scalable:** Rapidly installed standard interlocking modular units to expand projects from MWs to Gigawatts without technology scaling risk.
- **High Performance**: Optimized supply chain and roadmap resulting in low Levelized Cost of Hydrogen (LCOH).
- **Dynamic Operation**: Fully compatible with renewable energy resources with PEM safety.
- **Proprietary Power Electronics:** Flexible and dynamic power electronics for an enhanced operation.
- Efficient Land Utilization: Flexible standard modular design for project layout optimization and stacking.
- **Short Production Downtime:** Rack-in/rack-out design for minimum maintenance downtime.

Short downtime

Efficient land use

Low installation cost

Scalable standard

modularunits

Construction in phases

Source : IEA 2021, Net Zero by 2050 - A Roadmap for the Global Energy Sector | Ohmium Confidential

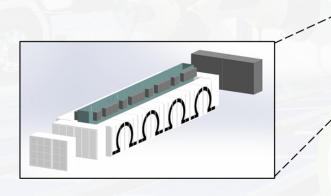
Comprehensive Hydrogen Solution

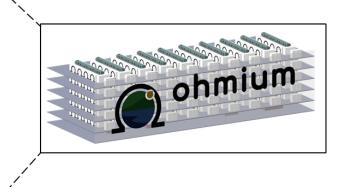
Production Specs *	Mark I	Mark II	
2 production	7 x 6.0 kg/hr	7 x 9.0 kg/hr	
I ₂ pressure	Up to 27 bars	Up to 34 bars	
l ₂ purity	≥ 99.99% (high)	≥ 99.999% (ultra high)	
ynamic range	10% - 100%	10% - 100%	
amp-up time	5 sec	5 sec	
P ₂ Production	Optional	Optional	
	Inputs		
ower	7 x 300kW _{dc} 480VAC or 415VAC 3ph 50 Hz or 60 Hz	7 x 450kW _{dc} 480VAC or 415VAC 3ph 50 Hz or 60 Hz	
Water	7 x 1.4 SLM DI water Or 7 x 2.7 SLM City water	7 x 2.1 SLM DI water Or 7 x 4.0 SLM City water	
	Other		
nbient temp.	-25 °C	-25 °C to 50 °C	
imensions (LWH)		8 x (2) Cabinets (1.8 x 1.3 x 1.8 m) Auxiliary Cabinets (1.8 x 1.3 x 1.8 m)	
CADA & Controls	Fully co	Fully compatible	
Comm Interface	TCP/IP, RS485		
Conformity	Designed to UL 2264A		

100

nics Module dule ution Module le ule

in is for reference only and


Source: IEA 2021, Net Zero by 2050 - A Roadmap for the Global Energy Sector | Ohmium Confidential



Ohmium towers – Architecture for the new energy future

- Can be built at fueling stations
- Can be scaled up seamlessly in phases as demand increases
- Can be sized to meet any volume from a few MW to GWs

Rapid design, installation and maintenance for large scale projects

Proprietary stacking design for efficient land utilization

Thank You

For discussions/suggestions/queries email: shaji.john@ohmium.com

